ZETTLER DISPLAYS

SPECIFICATIONS FOR LIQUID CRYSTAL DISPLAY

	CUSTOMER APP	ROVAL	
※ PART NO	D.: <u>ATM0700L76 (ZET</u>	TLER DISPLA	YS) SPEC V1.5
APPROVAL		COMPANY CHOP	
CUSTOMER			
COMMENTS			

ZETTLER DI	ZETTLER DISPLAYS ENGINEERING APPROVAL							
DESIGNED BY	DESIGNED BY CHECKED BY APPROVED BY							
XW	GZC	GZH						

REVISION RECORD

REVISION	REVISION DATE	PAGE	CONTENTS
PRELIMINARY	2021-04-09		FIRST ISSUE
FRELIVIINANT	2021-04-25	20	ADJUST THE CONNECTOR STRUCTURE POSITION
V1.0	2021-04-29		FORMAL SPECIFICATION
V1.1	2021-07-15	10	UPDATE LED USAGE CONDITIONS
V1.2	2021-08-20	3,20,21	UPDATED WEIGHT, DRIVER IC, PACKAGING SPECIFICATIONS
V1.3	2022-01-21	3	UPDATED TFT DRIVER IC INFORMATION
V1.4	2022-07-18	4,10	ADD THE CONNECTOR COMPATIBILITY DESCRIPTION
V1.5	2024-12-07	18,19	UPDATE PRECAUTION

***** CONTENTS

- 1. GENERAL SPECIFICATIONS
- 2. PIN ASSIGNMENT
- 3. OPERATING SPECIFICATIONS
- 4. OPTICAL SPECIFICATIONS
- 5. RELIABILITY TEST
- 6. PRECAUTION FOR USING LCM
- 7. MECHANICAL DRAWING
- 8. PACKAGE DRAWING
- 9. INSPECTION SPECIFICATION

1. GENERAL SPECIFICATIONS

ltem	Specification	Remark
1. LCD size	7.0 inch(Diagonal)	
2. Driver element	a-Si TFT active matrix	
3. Resolution	800x480	
4. Display mode	Normally black, IPS, Transmissive	
5. Dot Pitch (W*H)	0.0635mm(W) x 0.1905mm(H)	
6. Pixel pitch(W*H)	0.1905mm(W) x 0.1905mm(H)	
7. Active Area(W*H)	152.4mm(W) x 91.44mm(H)	
8. Module size (W*H)	170.0mm(W) x 110.0mm(H) x 9.0mm(D)	Note 1
9. Surface treatment	Anti-glare / 3H	
10. Color arrangement	RGB-stripe	
11. Color	16.7M / 262K	
12. Viewing angle (L/R/T/B)	85/85/85	
13. Interface	4-lane / 3-lane LVDS interface	
13. Interface	VESA/JEIDA compatible	
14. LCD controller	HX8290-A-LT / HX8290-A02-LT (source)	
14. LCD controller	HX8664-B (gate)	
15. LCM brightness	1100cd/m2 Typ.	
16. Backlight driving condition	12V	
17. Touch panel	Without touch panel	
18. Touch controller	Without touch IC	
19. Operation temperature	-40~85 °C	
20. Weight	190 g	
21. RoHS	RoHS compliant	

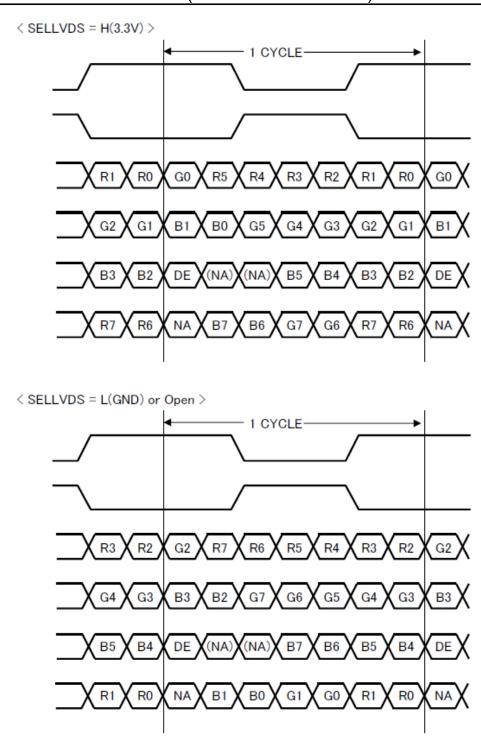
Note 1: Please refer to mechanical drawing.

2. PIN ASSIGNMENT

Connector on board: DF14H-20P-1.25H(HIROSE) or compatible

Mating connector: DF14-20S-1.25C(HIROSE) DF14-2628SCF(terminal) or compatible

Mating LVDS transmitter: THC63LVDM83R (Thine electronics) or compatible

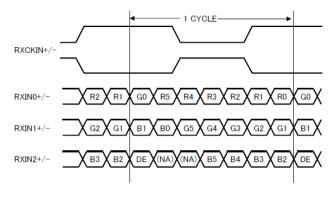

Pin No.	Symbol	Function	Level	Note
1,2	VCC	Power for digital circuit	Р	
3,4	GND	Power ground	Р	
5	RXIN0-	LVDS channel 0 negative	I	
6	RXIN0+	LVDS channel 0 positive	I	
7	GND	Power ground	Р	
8	RXIN1-	LVDS channel 1 negative	I	
9	RXIN1+	LVDS channel 1 positive	I	
10	GND	Power ground	Р	
11	RXIN2-	LVDS channel 2 negative	I	
12	RXIN2+	LVDS channel 2 positive	I	
13	GND	Power ground	Р	
14	RXCKIN-	LVDS clock negative	I	
15	RXCKIN+	LVDS clock positive	I	
16	GND	Power ground	Р	
17	RXIN3-	LVDS channel 3 negative	I	
18	RXIN3+	LVDS channel 3 positive	I	
10	MODE	Low=ISP 6 compatibility mode		
19	MODE	High=ISP 8 bit compatibility mode	'	
		Scan direction control		
20	SC	Low=Normal;	I	NOTE1
		High=Reverse		

I: input, O: output, P: Power

Note 1: Refer to the structure drawing for instructions

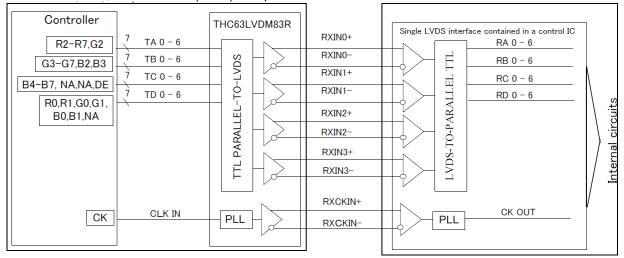
Data mapping
1) 8 bit input
Example mating connector: THC64LVDM83R(Thine electronics) or compatible

	mitter	20Pin S	ELLVDS		
Pin No	Data	= H(3.3V)	= L(GND) or Open		
51	TA0	R0 (LSB)	R2		
52	TA1	R1	R3		
54	TA2	R2	R4		
55	TA3	R3	R5		
56	TA4	R4	R6		
3	TA5	R5	R7 (MSB)		
4	TA6	G0 (LSB)	G2		
6	TB0	G1	G3		
7	TB1	G2	G4		
11	TB2	G3	G5		
12	TB3	G4	G6		
14	TB4	G5	G7 (MSB)		
15	TB5	B0 (LSB)	B2		
19	TB6	B1	B3		
20	TC0	B2	B4		
22	TC1	B3	B5		
23	TC2	B4	B6		
24	TC3	B5	B7 (MSB)		
27	TC4	(NA)	(NA)		
28	TC5	(NA)	(NA)		
30	TC6	DE	DE		
50	TD0	R6	R0 (LSB)		
2	TD1	R7 (MSB)	R1		
8	TD2	G6	G0 (LSB)		
10	TD3	G7 (MSB)	G1		
16	TD4	B6	B0 (LSB)		
18	TD5	B7 (MSB)	B1		
25	TD6	(NA)	(NA)		

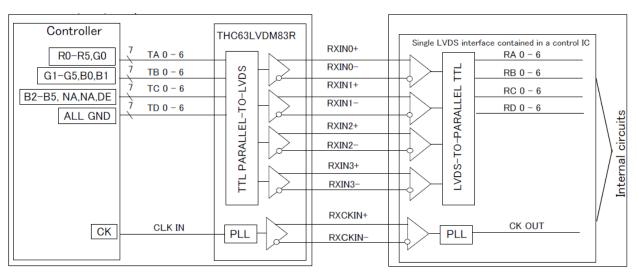

DE: DATA ENABLE

2) 6 bit input

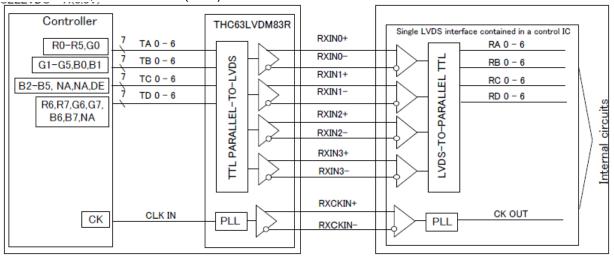
Example mating connector: THC63LVDM83R(Thine electronics) or compatible


Transmitter		20Pin S	ELLVDS		
Pin No	Data	= H(3.3V)	= L(GND) or Open		
51	TA0	-	R0 (LSB)		
52	TA1	-	R1		
54	TA2	_	R2		
55	TA3	-	R3		
56	TA4	-	R4		
3	TA5	-	R5 (MSB)		
4	TA6	-	G0 (LSB)		
6	TB0	-	G1		
7	TB1	-	G2		
11	TB2	-	G3		
12	TB3	-	G4		
14	TB4	-	G5 (MSB)		
15	TB5	-	B0 (LSB)		
19	TB6	-	B1		
20	TC0	-	B2		
22	TC1	-	B3		
23	TC2	-	B4		
24	TC3	-	B5 (MSB)		
27	TC4	-	(NA)		
28	TC5	-	(NA)		
30	TC6	-	DE		
50	TD0	-	GND		
2	TD1	-	GND		
8	TD2	-	GND		
10	TD3	-	GND		
16	TD4	-	GND		
18	TD5	-	GND		
25	TD6	-	(NA)		

< SELLVDS = L(GND) or Open >



DE:DATA ENABLE
NA:Not Available


8bit JEIDA mode, SELLVDS = L(GND) or Open:

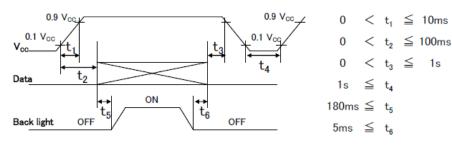
6bit VESA mode, SELLVDS = L(GND) or Open:

8bit VESA mode, SELLVDS = H(3.3V):

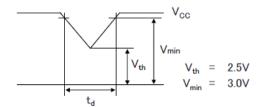
3. Operating Specification

3.1 ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Val	ues	Unit	Remark
	Syllibol	Min.	Max.	Oilit	Remark
Power Voltage	V _{cc}	-0.3	5.0	V	
LVDS input voltage	V _{IL}	-0.3	VCC+0.3	V	
Operation Temperature	T _{OP}	-40	85	°C	
Storage Temperature	T _{ST}	-40	85	°C	
LED Reverse Voltage	V_R	-	1.2	V	Each LED Note 2
LED Forward Current	I _F		25	mA	Each LED


Note 1: The absolute maximum rating values of this product are not allowed to be exceeded at any times. Should a module be used with any of the absolute maximum ratings exceeded, the characteristics of the module may not be recovered, or in an extreme case, the module may be permanently destroyed.

Note 2: V_R Conditions: Zener Diode 20mA


3.1.1 Typical Operation Conditions

Item		Symbol		Values		Unit	Remark
itein	nem		Min.	Тур.	Max.	Oille	Kelliaik
Power Voltage		V_{CC}	3.0	3.3	3.6	V	Note 1
Current dissipation	Current dissipation			65	130	mA	
Input voltage range	Input voltage range		0		2.4	V	LVDS
Permissive input ripp	Permissive input ripple voltage				V _{CM} +100	mV	V _{CC} =3.3V
Differential input	High				V _{CM} +100	mV	\/ -1.2\/
Threshold voltage	Low		V _{CM} -100			mV	- V _{CM} =1.2V
Terminal resistor		R⊤		100		Ω	

Note 1:

Vcc-dip conditions

- . Vth < V_{CC} \leqq Vmin $t_d ~\leqq~ 10 ms$
- \cdot V_{CC} < V_{th}

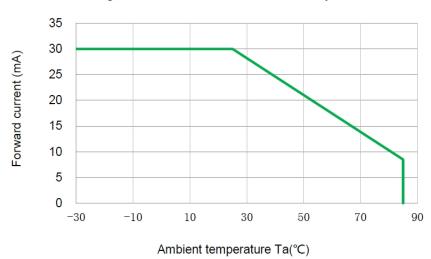
Vcc-dip conditions should also follow the On-off conditions for supply voltage

3.1.2 Backlight driving conditions

Item	Symbol	Values			Unit	Remark
item	Symbol	Min.	Тур.	Max.	Oilit	Remark
Voltage for Backlight circuit	V _L	10.8	12	13.2	V	Note 1
Current for Backlight circuit	Ι _L		450	520	mA	
Power for Backlight circuit	PL		5400	6864	mw	
BLEN Input Low Voltage	EN _{Low}			0.4	V	
BLEN Input High Voltage	EN _{High}	1.4			V	
PWM Dimming Range	PWM	1		100	%	
PWM Frequency	F _{PDIM}	200		200K	Hz	
LED life time		80000	100000		Hr	Note 2

Note 1: LED power supply voltage is defined as 25°C

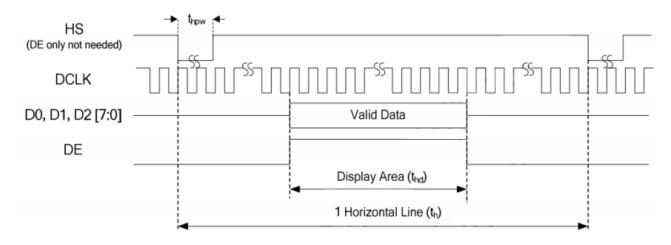
Note 2: The "LED life time" is defined as the module brightness decrease to 50% original brightness at Ta=25℃

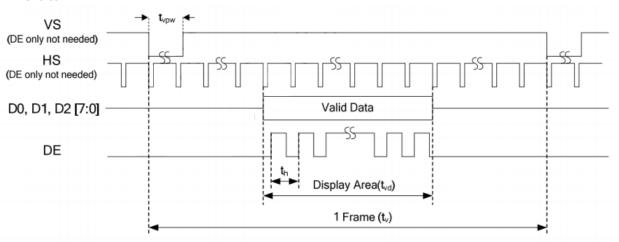

PCBA-side Connector: FI-S6P-HFE(JAE) or compatible

Mating connector: FI-S6S(JAE) or compatible

Pin No.	Symbol	Function	Level	Note
1	VLED	12V Power Supply Input Voltage	Р	
2	VLED	12V Power Supply Input Voltage	Р	
3	GLED	GND	Р	
4	GLED	GND	Р	
5	BLEN	Backlight ON-OFF (High:ON, Low: OFF)	I	
6	PWM	Light Dimming control PWM	I	

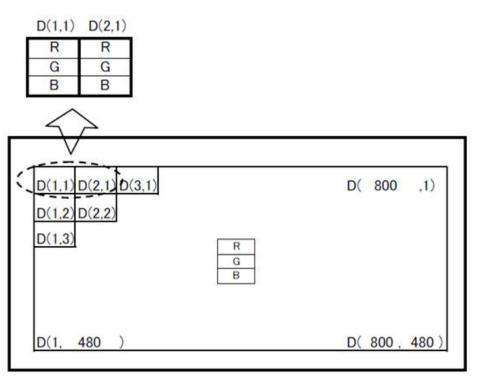
Note: For LED(single LED) Working temperature, please refer to the following figure


Fig.5 Forward current VS. Ambient temperature


3.2 Power Sequence and timing

3.2.1 Timing

Horizontal


Vertical

ltem	Symbol	Values			Unit	Remark
item	Symbol	Min.	Тур.	Max.	Oilit	Keiliaik
Horizontal Display Area	thd		800		DCLK	
DCLK Frequency	fclk	24.2	24.9	38.9	MHz	
One Horizontal Line	th	829	842	1040	DCLK	
HS Pulse Width	thpw	10	12	255	DCLK	
HS Blanking	thb	5	16	255	DCLK	
HS Front Porch	thfp	24	26	260	DCLK	

ltem	Symbol		Values	Unit	Remark	
item	Symbol	Min.	Тур.	Max.	Offic	Remark
Vertical Display Area	tvd		480		TH	
VS Period Time	tv	487	493	624	TH	
VS Pulse Width	tvpw	1	3	20	TH	
VS Blanking	tvb	2	5	255	TH	
VS Front Porch	tvfp	5	8	260	TH	

3.2.2 Input data signals and Display Position on the screen

3.2.2 Input signals, Basic Display Colors and Gray Scale of Each Color

			Data signal																							
	Colors & Gray scale	Gray Scale	R0	R1	R2	R3	R4	R5	R6	R7	G0	G1	G2	G3	G4	G5	G6	G7	В0	B1	B2	ВЗ	B4	B5	B6	В7
	Black	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Х	Х	1	1	1	1	1	1
or	Green	_	0	0	0	0	0	0	0	0	X	X	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Color	Cyan	_	0	0	0	0	0	0	0	0	X	X	1	1	1	1	1	1	X	X	1	1	1	1	1	1
Basic	Red	_	X	X	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ä	Magenta	_	X	X	1	1	1	1	1	1	0	0	0	0	0	0	0	0	X	X	1	1	1	1	1	1
	Yellow	_	X	X	1	1	1	1	1	1	X	X	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	_	X	X	1	1	1	1	1	1	X	X	1	1	1	1	1	1	X	X	1	1	1	1	1	1
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ф	1	GS1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale of Red	Darker	GS2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
o all	1	1					1								1								1			
	Ţ	Ţ	1							1					1											
Gray	Brighter	GS250	1	0	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Ţ	GS251	1	1	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	GS252	Χ	X	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
en	1	GS1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Green	Darker	GS2	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
e of	1	1					1								1								1			
Scale of	Ţ	Ţ					l								l								Į			
Gray (Brighter	GS250	0	0	0	0	0	0	0	0	1	0	0	1	1	1	1	1	0	0	0	0	0	0	0	0
Ğ	Ţ	GS251	0	0	0	0	0	0	0	0	1	1	0	1	1	1	1	1	0	0	0	0	0	0	0	0
	Green	GS252	0	0	0	0	0	0	0	0	X	X	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
e	1	GS1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
f Blue	Darker	GS2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Scale of	1	1					1				1					1										
Sca	Ţ	Ţ					l				1					1										
Gray	Brighter	GS250	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1	1	1	1
	Ţ	GS251	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1	1	1	1	1
	Blue	GS252	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	X	X	1	1	1	1	1	1

0 :Low level voltage 1 :High level voltage X :Don't care

Each basic color can be displayed in 253 gray scales from 8 bit data signals. According to the combination of total 24 bit data signals, the 16-million-color display can be achieved on the screen.

4.0 OPTICAL SPECIFICATIONS

Item	Symbol	Condition		Values	Unit	Remark		
item	Syllibol	Condition	Min.	Тур.	Max.	Oilit	Kelliaik	
	θ_{L}	Φ=180°(9 O'CLOCK)	70	85			Note 1	
Viewing Angle	θ_{R}	Φ=0°(3 O'CLOCK)	70	85		dograo		
(CR≥10)	θ_{T}	Φ=90°(12 O'CLOCK)	70	85		degree		
	θ_{B}	Φ=270°(6 O'CLOCK)	70	85				
Response Time	T _{ON}			10	15	msec	Note 3	
Response Time	T _{OFF}			20	25	msec	Note 3	
Contrast Ratio	CR	Normal	700	900			Note 4	
Calar Chramaticity	W _X	Normal Θ=Φ=0°	0.26	0.31	0.36		Note 2	
Color Chromaticity	W_{Y}	$\Theta = \Psi = 0$	0.29	0.34	0.39		Note 5,6	
Luminance	L		880	1100		cd/m ²	Note 6	
Luminance Uniformity	YU		75	80		%	Note 7	

Test Conditions:

- 1. PWM=100%, the ambient temperature is 25° C. 2. The test systems refer to Note 2.

Note 1: Definition of viewing angle range

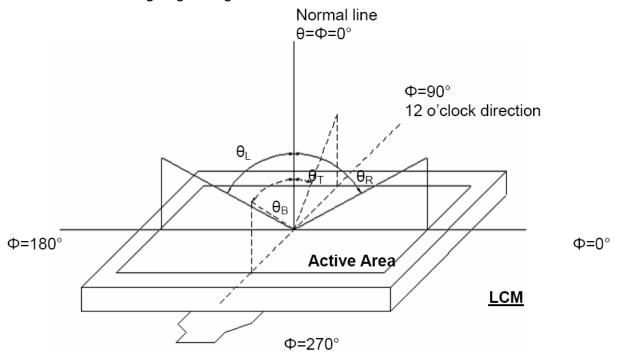


Figure 4.1 Definition of viewing angle.

Note 2: Definition of optical measurement system.

The optical characteristics should be measured in dark room. After 30 minutes operation, the optical properties are measured at the center point of the LCD screen. (Response time is measured by Photo detector TOPCON

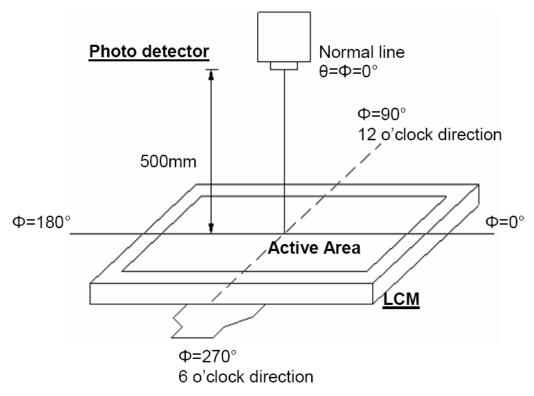


Figure 4.2 Optical measurement system setup

Note 3: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (TON) is the time between photo detector output intensity changed from 90% to 10%. And fall time (TOFF) is the time between photo detector output intensity changed from 10% to 90%.

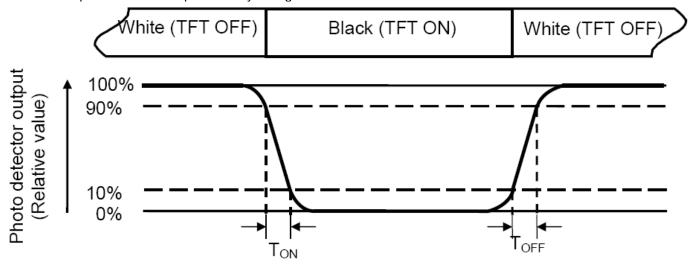


Figure 4.3 Definition of response.

Note 4: Definition of contrast ratio

 $\text{Contrast ratio(CR)} = \frac{\text{Luminance measured when LCD on the "white" state}}{\text{Luminance measured when LCD on the "black" state}}$

Note 5: Definition of color chromaticity (CIE1931)

Color coordinates measured at center point of LCD.

Note 6: All input terminals LCD panel must be ground while measuring the center area of the panel.

Note 7: Definition of Luminance Uniformity

Active area is divided into 9 measuring areas (Refer to Fig. 4-4). Every measuring point is placed at the center of each measuring area.

Luminance Uniformity (Yu) =
$$\frac{B_{min}}{B_{max}}$$

L-----Active area length W----- Active area width

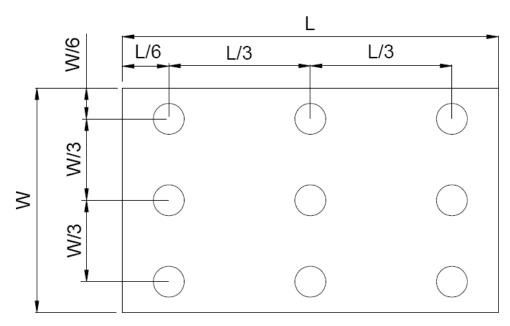


Figure 4.3 Definition of measuring points.

Bmax: The measured maximum luminance of all measurement position. Bmin: The measured minimum luminance of all measurement position.

5. RELIABILITY TEST

Item	Test Condition Item	Remark
High temperature storage	Ta= 85 °C 240hrs	Note 1,4
Low temperature storage	Ta=-40 °C 240hrs	Note 1,4
High temperature operation	Ts= 85 °C 240hrs	Note 2,4
Low temperature operation	Ts=-40 °C 240hrs	Note 1,4
High temperature/High humidity storage	90% RH 60°C 240hrs	Note 4
Thermal Shock	-30℃/30 min ~ +80℃/30 min for a total 100 cycles, Start with cold temperature and end with high temperature.	Note 4
Vibration test	Freq:10~55~10Hz Amplitude:0.75mm 30min for each direction of X,Y,Z (1.5 hours for total)	
Package drop test	Height:60 cm 1 corner, 3 edges, 6 surfaces	
Electro static discharge	R: 330 \(\Omega \) C:150pF Contact discharge: ±2K	Note 5

- Note 1: Ta is the ambient temperature of samples.
- Note 2: Ts is the temperature of panel's surface.
- **Note 3**: In the standard condition, there shall be no practical problem that may affect the display function. After the reliability test, the product only guarantees operation, but don't guarantee all of the cosmetic specification.
- **Note 4**: Before cosmetic and function test, the product must have enough recovery time, at least 2 hours at room temperature.
- Note 5: Sample quantity no less than 3 pcs. Discharge no less than 5 times.

 Contact discharge on bezel. For those without bezel, this test is not applicable

 If the LCM is working abnormally during test but can recover after reset or after 2 hours recovery, the LCM is considered OK.

6. PRECAUTION FOR USING LCM

- When design the product with this LCD Module, make sure the viewing angle matches to its purpose of usage.
- 2. As LCD panel is made of glass substrate, dropping the LCD module or banging it against hard objects may cause cracking or fragmentation. Especially at corners and edges.
- 3. Although the polarizer of this LCD Module has the anti-glare coating, always be careful not to scratch its surface. Use of a plastic cover is recommended to protect the surface of polarizer.
- 4. If the LCD module is stored below specified temperature, the LC material may freeze and be deteriorated. If it is stored above specified temperature, the molecular orientation of the LC material may change to Liquid state and it may not revert to its original state. And also excessive temperature and humidity could cause polarizer peel off or bubble. Therefore, the LCD module should always be stored within specified temperature and humidity range. If the LCD modules will be stored for a long time, the recommend temperature/humidity for the storage environment is:

Temperature : 15°C ~ 35°C / Relatively humidity: ≤80%

- 5. Meanwhile please follow other requirements below for storage:
 - -Store with no touch on display surface by the anything else. If possible, store the LCD in the packaging situation when it was delivered.
- -If the original package is opened, please store in an anti-static polyethylene bag and seal it so as not to get fresh air outside enter into it.
 - LCD modules shall be stored in a dark place. And it shall not be exposed to sunlight nor fluorescent light in storage.

Note: If the storage time is over 1 year, the golden fingers of FPC might be slightly oxidized, but it won't affect the electrical performance, customer can use rubber to clean the golden fingers before assembly or directly assemble the display.

6. Saliva or water droplets must be wiped off immediately as those may leave stains or cause color changes if is remained there for a long time. And water vapor will cause corrosion of ITO electrodes.

If the surface of LCD panel needs to be cleaned, wipe it swiftly with cotton or other soft dry cloth. If it is not still clean enough, blow a breath on the surface and wipe again.

If needed, please just moisten cloth with one of the following solvents:

- Isopropyl alcohol
- Ethyl alcohol

Solvents other than those mentioned above may damage the polarizer. Especially, do not use the following:

- Water
- Ketone
- Aromatic solvents
- 7. The module should be driven according to the specified ratings to avoid malfunction and permanent damage. Applying DC voltage cause a rapid deterioration of LC material. Make sure to apply alternating waveform by continuous application of the M signal. Especially the power ON/OFF sequence should be kept to avoid latch-up of driver LSIs and DC charge up to LCD panel.
- 8. Mechanical Considerations
 - a) LCM are assembled and adjusted with a high degree of precision. Avoid excessive shocks and do not make any alterations or modifications. The following should be noted.
 - b) Do not tamper in any way with the tabs on the metal frame.
 - Do not modify the PCB by drilling extra holes, changing its outline, moving its components or modifying its pattern.
- 9. Static Electricity
 - a) Operator

Wear the electrostatics shielded clothes because human body may be statically charged if not ware shielded clothes. Never touch any of the conductive parts such as the LSI pads; the copper leads on the PCB and the interface terminals with any parts of the human body.

b) Equipment

There is a possibility that the static electricity is charged to the equipment, which has a function of peeling or friction action (ex: conveyer, soldering iron, working table). Earth the equipment through proper resistance (electrostatic earth: 1x10⁸ ohm).

Only properly grounded soldering irons should be used.

If an electric screwdriver is used, it should be well grounded and shielded from commutator sparks.

The normal static prevention measures should be observed for work clothes and working benches; for the latter conductive (rubber) mat is recommended.

c) Floor

Floor is the important part to drain static electricity, which is generated by operators or equipment.

There is a possibility that charged static electricity is not properly drained in case of insulating floor. Set the electrostatic earth (electrostatic earth: 1x10⁸ ohm).

d) Humidity

Proper humidity helps in reducing the chance of generating electrostatic charges. Humidity should be kept between 50%RH and 80%RH.

e) Transportation/storage

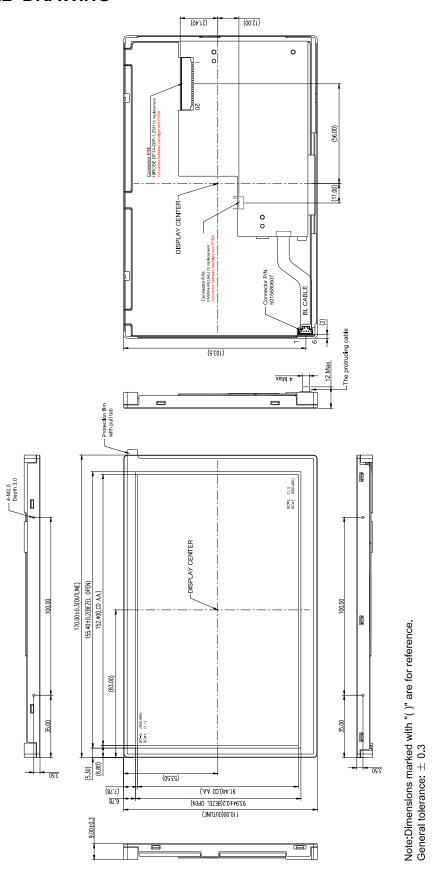
The storage materials also need to be anti-static treated because there is a possibility that the human body or storage materials such as containers may be statically charged by friction or peeling.

The modules should be kept in antistatic bags or other containers resistant to static for storage.

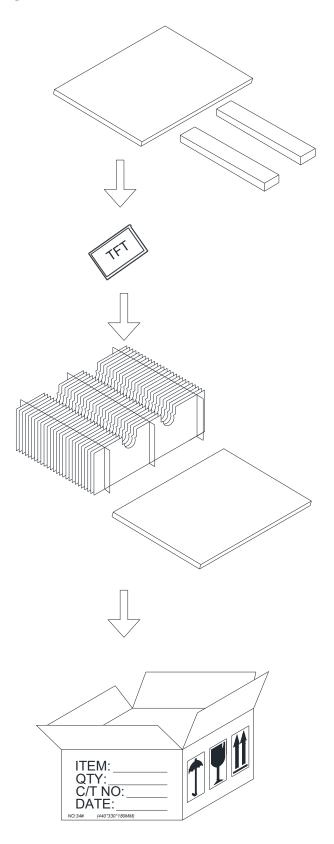
f) Soldering

Soldering anything to this TFT display would void the warranty.

g) Others


The laminator (protective film) is attached on the surface of LCD panel to prevent it from scratches or stains. It should be peeled off slowly using static eliminator.

Static eliminator should also be installed to the workbench to prevent LCD module from static charge.


10. Operation

- a) Driving voltage should be kept within specified range; excess voltage shortens display life.
- b) Response time increases with decrease in temperature.
- c) Display may turn black or dark blue at temperatures above its operational range; this is (however not pressing on the viewing area) may cause the segments to appear "fractured".
- d) Mechanical disturbance during operation (such as pressing on the viewing area) may cause the segments to appear "fractured".
- 11. If any fluid leaks out of a damaged glass cell, wash off any human part that comes into contact with soap and water. The toxicity is extremely low but caution should be exercised at all the time.
- 12. Disassembling the LCD module can cause permanent damage and it should be strictly avoided.
- 13. LCD retains the display pattern when it is applied for long time (Image retention). To prevent image retention, do not apply the fixed pattern for a long time. Image retention is not a deterioration of LCD. It will be removed after display pattern is changed.
- 14. Do not use any materials, which emit gas from epoxy resin (hardener for amine) and silicone adhesive agent (dealcohol or deoxym) to prevent discoloration of polarizer due to gas.
- 15. Avoid the exposure of the module to the direct sunlight or strong ultraviolet light for a long time.

7. MECHANICAL DRAWING

8. PACKAGE DRAWING

9. INSPECTION SPECIFICATION

1. SCOPE SPECIFICATIONS CONTAIN

- 1.1 DISPLAY QUALITY EVALUATION
- 1.2 MECHANICS SPECIFICATION

2. SAMPLING PLAN

UNLESS THERE IS OTHER AGREEMENT, THE SAMPLING PLAN FOR INCOMING INSPECTION SHALL FOLLOW MIL-STD-105E.

- 2.1 LOT SIZE: QUANTITY PER SHIPMENT AS ONE LOT (DIFFERENT MODEL AS DIFFERENT LOT).
- 2.2 SAMPLING TYPE: NORMAL INSPECTION, SINGLE SAMPLING.
- 2.3 SAMPLING LEVEL: LEVEL II.
- 2.4 AQL: ACCEPTABLE QUALITY LEVEL

MAJOR DEFECT: AQL=0.65 MINOR DEFECT: AQL=1.0

3. PANEL INSPECTION CONDITION

3.1 ENVIRONMENT:

ROOM TEMPERATURE: 25±5°C.

HUMIDITY: 65±5% RH.

ILLUMINATION: 300 ~ 700 LUX.

3.2 INSPECTION DISTANCE:

35±5 CM

3.3 INSPECTION ANGLE:

THE VISION OF INSPECTOR SHOULD BE PERPENDICULAR TO THE SURFACE OF THE MODULE.

3.4 INSPECTION TIME:

PERCEPTIBILITY TEST TIME: 20 SECONDS MAX.

4. DISPLAY QUALITY

4.1 FUNCTION RELATED:

THE FUNCTION DEFECTS OF LINE DEFECT, ABNORMAL DISPLAY, AND NO DISPLAY ARE CONSIDERED MAJOR DEFECTS.

4.2 BRIGHT/DARK DOTS:

Defect Type	Specification	Major	Minor
Bright Dots	N≦2		•
Drak Dots	N≦3		•
Total Bright and Dark Dots	N≦4		•

Note: 1:

The definition of dot: The size of a defective dot over 1/2 of whole dot is regarded as one defective dot.

Bright dot: Dots appear bright and unchanged in size in which LCD panel is displaying under black pattern.

The bright dot defect must be visible through 2% ND filter

Dark dot: Dots appear dark and unchanged in size in which LCD panel is displaying under pure red, green, blue pattern.

4.3 Pixel Definition:

R	G	В	R	G	В	R	G	В	Dot Defect
R	O	В	R	O	В	R	G	В	Adjacent Dot Defect
R	G	В	R	G	В	R	G	В	Cluster

Note 1:

If pixel or partial sub-pixel defects exceed 50% of the affected pixel or sub-pixel area, it shall be considered as1 defect.

Note 2:

There should be no distinct non-uniformity visible through 2% ND Filter within 2 sec inspection times.

4.4Visual Inspection specifications:

De	efect Type	Specification Size	Count (N)	Major	Minor
	Dot shape	D≤0.25mm	Ignored		
	cratch and Bubbles in splay area)	0.25mm <d≤0.5mm< td=""><td>N≤3</td><td></td><td>•</td></d≤0.5mm<>	N≤3		•
		D>0.5mm	N=0		
5	(0.1.5.7	D≤70mm	N≤4		_
Newton Ring	(Only for Touch panel)	D>70mm	N=0		•
TOD Fish Free	· (Only for Toylob money)	0.1mm <d≤0.2mm< td=""><td>N≤4</td><td></td><td></td></d≤0.2mm<>	N≤4		
1	s (Only for Touch panel) ubble/Dent)	0.2mm <d≤0.3mm< td=""><td>N≤3</td><td></td><td>•</td></d≤0.3mm<>	N≤3		•
	ubble/Defit)	0.3mm <d≤0.4mm< td=""><td>N≤2</td><td></td><td></td></d≤0.4mm<>	N≤2		
	ine shape	W≤0.01mm	Ignored		
	ratch、Lint and Bubbles lisplay area)	0.01 mm $<$ W \leqslant 0.05mm $,\;$ and L \leqslant 3mm	N≤3		•
		W $>$ 0.05mm, or L $>$ 3mm	N=0		
Bubble ir	n cell (active area)	It should be found by eyes			•
Bezel	Scratch	No harm			•
	Dirt	No harm			•
	Wrap	No harm			•
	Sunken	No harm			•
	No label	No		•	
	Inverted label	No			•
	Broken	No			•
Label	Dirt	Word can be read			•
Label	Not clear	No			•
	Word out of shape	No			•
	Mistake	No			•
	Position	Be attached on right position			•
Screw	Not enough	No		•	
Sciew	Limp	No			•
Connector	Connection status	No bend on PINs and damage		•	
FPC/FFC	Broken	No			•

Note: Extraneous substance and scratch not affecting the display of image, for instance, extraneous substance under polarizer film but outside the display area, or scratch on metal bezel and backlight module or polarizer film outside the display area, shall not be considered as defective or non-conforming.